Implications for the future

Dave Raggett, W3C
dsr@w3.org

NSF Workshop on Knowledge Representation and Information Management for Financial Risk Management, 21-22 July, Arlington, VA

http://irix.umiacs.umd.edu/

21 July 2010

With thanks to Ivan Herman for use of some of his slides
Before and after – impact of the Web

- Before the Web, applications were all locally installed and operated off local data
- The Internet and the Web changed all that
 - Browser as ubiquitous client
 - HTTP as the interface to remote services
 - Server-side scripts for access to legacy systems
 - Hiding the internal data formats and interfaces
 - Explosion of entrepreneurial activity
 - Due to ease in reaching potential customers
 - Rise of cloud computing and software as service
The Unfinished Revolution

• Today's Web is designed for people to interpret
 ○ Using your eyes and your mind
• Each website only covers part of your needs
 ○ You have to do integrate information across websites
 ○ This is time consuming and a waste of effort
• We should put computers to work on our behalf
 ○ We need to find ways for software to query, combine and interpret data accessible over the Web
 – Michael Dertouzos: “The Unfinished Revolution, How to Make Technology Work for Us--Instead of the Other Way Around”
Implications for Financial Risk Management

- The Web makes it easier to create applications acting over information
 - from different parts of an organization
 - and across multiple organizations
- Building upon, rather than replacing existing systems
 - HTTP with scripts and query languages as transducers
 - Exploiting investment in existing relational databases
- Greater transparency of operations
 - Potential for improved utilization of financial resources
- But dependent on freedom to innovate
 - Evolution versus intelligent design
W3C/XBRL Int. Inc Workshop on improving access to financial information on the Web

5-6 October 2009, Arlington VA, hosted by the FDIC

http://www.w3.org/2009/03/xbrl/cfp
W3C/XII 2009 Workshop

- Focused on opportunities and challenges for interactive access to business and financial data
- Brought together people from a wide range of backgrounds
 - Including government agencies (SEC, FDIC, FRB, EPA, FSTC, NIEM), businesses and academic researchers across the World
 - Sharing experiences in XBRL, Semantic Web and other fields
- Identified challenges
 - Practices for naming business and financial entities and associated metadata as a basis for comparing and combining different sources of information
 - Practices for harmonizing vocabularies, and the need for a continuing dialog across government agencies and business organizations
 - Need for robust treatment of provenance to avoid abuses
 - Further technical work on extending OWL to support richer integrity constraints, and role of intermediate data models for simplifying application development

More details at http://www.w3.org/2009/03/xbrl/report
So what is the Semantic Web?
It is, essentially, the Web of Data and the technologies to realize that.
Is it that simple...

- Of course, the devil is in the details
 - a common model has to be provided for machines to describe and query the data and its connections
 - the “classification” of the terms can become very complex for specific knowledge areas: this is where ontologies, thesauri, etc, enter the game…
Linked Data
Data Integration with the Semantic Web

- Map each data source into binary relations*

 ![Diagram](subject - Verb - object)

 All three are named with URIs

- Merge the relations from different sources
- Start making queries

* Binary relations as RDF triples
A simplified book store example

SQL database:

<table>
<thead>
<tr>
<th>ID</th>
<th>Author</th>
<th>Title</th>
<th>Publisher</th>
<th>Year</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Home Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>id_xyz</td>
<td>Ghosh, Amitav</td>
<td>http://www.amitavghosh.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Publ. Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>id_qpr</td>
<td>Harper Collins</td>
<td>London</td>
</tr>
</tbody>
</table>
Export data as relations

- The Glass Palace
- 2000
- London
- Harper Collins
- Ghosh, Amitav

http://.../isbn/000651409X

http://www.amitavghosh.com
Another book store example

Spreadsheet

<table>
<thead>
<tr>
<th></th>
<th>ID</th>
<th>Titre</th>
<th>Traducteur</th>
<th>Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ISBN-0-00-651409-X</td>
<td>A12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nom</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Ghosh, Amitav</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Besse, Christianne</td>
<td></td>
</tr>
</tbody>
</table>
Export it as relations
Merge the relations
Merging continued...
Merging identical nodes
Add some missing knowledge

- We “feel” that a:author and f:auteur should be the same
- But an automatic merge doesn't know that without help
- We will add some extra information to the merged data:
 - a:author same as f:auteur
 - both identify a “Person”
 - a term that a community may have already defined:
 - a “Person” is uniquely identified by his/her name and, say, homepage
 - it can be used as a “category” for certain type of resources
The merged relations
What did we do?
Web of Data

- We should publish data on servers
 - In standard ways rather than ad hoc approaches
 - To encourage shared semantics for comparability and aggregation
- Set RDF links among the data items from different data sets
 - URIs as globally unique names
 - URIs for downloadable datasets (RDF graphs)
 - URIs for Web APIs including Sparql queries
- Encourage people to innovate
 - More data
 - More applications
- *Watch the network effect work its magic!*
 - *The value scales as the square of the number of participants*
 - As described by Beckstrom, Reed, Metcalfe and originally Vail
Linked Open Data Cloud, March 2008
Corporate adoption

- Major companies offer (or will offer) Semantic Web tools or systems using Semantic Web: Adobe, Oracle, IBM, Software AG, GE, Northrop Gruman, Altova, Microsoft, Dow Jones, …

- Others are using it (or consider using it) as part of their own operations: Novartis, Pfizer, Telefónica, …

- Some of the names of active participants in W3C SW related groups: ILOG, HP, Agfa, SRI International, Fair Isaac Corp., Oracle, Boeing, IBM, Chevron, Siemens, Nokia, Pfizer, Sun, Eli Lilly, …
Query languages
Querying RDF with SPARQL

- A query language for RDF data
- Similar in syntax and spirit to SQL

```
SELECT ?p
WHERE {
    ?b1 xl:type xl:link .
    ?b1 xl:from ?p
    OPTIONAL {
        ?b2 xl:type xl:link .
        ?b2 xl:to ?p
    }
    FILTER (!BOUND(?b2))
}
```
Defining shared vocabularies
Data Types

- RDFS defines some predicates for common datatypes, e.g.
 - Booleans
 - Numbers
 - Strings
 - As XML or as natural language, e.g. Spanish
 - Dates
 - Classes
- Resources can belong to several classes
OWL for Ontologies

- RDFS is useful, but complex applications may want more
- OWL adds lots of possibilities
 - Characterization of properties
 - Disjointness or equivalence of classes
 - In RDFS, you can subclass existing classes
 - In OWL, you can construct classes from existing ones
 - Through set intersection, union, complement, etc.
- But this comes at a cost...
OWL Profiles

- Trade off between rich semantics for expressibility and ease of making inferences
 - Simpler inference engines are possible with restrictions on which terms can be used and under what circumstances
- OWL full
 - Very expressive, but not computable in general
- OWL DL
 - Popular computable subset of OWL full
- OWL 2 defines further profiles
Business Rules
Rule Languages

- May be more convenient than ontologies
- Example
 - A cheap book is a novel with over 500 pages and costing less than $8
- W3C Rule Interchange Format (RIF)
 - Family of languages for rule interchange
 - For different kinds of rule language
 - Uses include
 - Negotiating eBusiness contracts across platforms
 - Access to business rules of supply chain partners
 - Managing inter-organizational business policies
XBRL and the Semantic Web

XBRL – an XML format for company reports where each reported fact is tagged with its context in the reporting taxonomy, e.g. US GAAP or IFRS
XBRL
Why translate XBRL to another format?

- It is very expensive to process 10-50MB of XML on each query
 - Memory and CPU intensive: about one second of CPU time per 10MB of XML source

- Better to pre-process filings into a persistent format designed to match needs of queries
 - Current tools use proprietary solutions

- RDF and OWL as natural choices
 - Mature standards
 - Facilitate mashing financial data with other kinds of information available over the Web
 - Web APIs and standards would enable an ecosystem of value adding players
XBRL as RDF/Turtle

Part of US GAAP taxonomy

usfr-pte:ChangeOtherCurrentAssets
 rdf:type xbrli:monetaryItemType;
 xbrli:periodType "duration".
usfr-pte:ChangeOtherCurrentLiabilities
 rdf:type xbrli:monetaryItemType;
 xbrli:periodType "duration".

_:link155 arcrole:parent-child [xl:type xl:link;
 xl:role role1:StatementFinancialPosition;
 xl:use "prohibited";
 xl:priority "1"^^xsd:integer;
 xl:order "1.0"^^xsd:decimal;
 xl:from usfr-pte:IntangibleAssetsNetAbstract;
 xl:to usfr-pte:IntangibleAssetsGoodwill;].
XBRL as RDF/Turtle

Sample of an XBRL Instance file

_:context_FY07Q3
 xl:type xbrli:context;
 xbrli:entity [
 xbrli:identifier "0000789019";
 xbrli:scheme <http://sec.gov/CIK>;
];
 xbrli:period ([
 xbrli:startDate "2007-01-01"^^xsd:date;
 xbrli:endDate "2007-03-31"^^xsd:date;
]).

_:unit_usd xbrli:measure iso4217:USD.

_:fact209
 xl:type xbrli:fact;
 xl:provenance _:provenance1;
 rdf:type us-gaap:PaymentsToAcquireProductiveAssets;
 rdf:value "461000000"^^xsd:integer;
 xbrli:decimals "-6"^^xsd:integer;
 xbrli:unit _:unit_USD;
 xbrli:context _:context_FY07Q3.
XBRL and OWL

- XBRL Taxonomy loosely equates to OWL ontology
 - But note XBRL's taxonomy overrides
- Automated mapping is mostly feasible
 - As demonstrated by Rhizomik XSD2OWL
- XBRL's formal semantics are weak
- XBRL versioning standard will describe differences between different versions of the same taxonomy, e.g. US GAAP 2008, 2009
 - Unaware of work on mapping this into OWL
 - Is it a good match to real world needs?
 - e.g. rules of thumb for computing analytic ratios
- Reasoning across different taxonomies remains a major challenge
 - e.g. US GAAP vs IFRS
- Need for standards for business & financial data that are syntax independent
Web-based ecosystem for financial information

- Publishers of raw data
 - Investor relation websites
 - Government agencies
 - News agencies

- Data aggregators
 - Republish data as linkable triples, Sparql queries
 - Higher level APIs for common queries
 - Results as charts or tables
 - Web of scripts that add value
 - Custom analytics across filings
 - Export triples, high level APIs or presentations

- Smart search engines

- Communities
 - Share reviews, comments, analyses, mashups, ...
Smart Search Engines

- Imagine search engines that provide selected financial highlights for each company that matches the search criteria you just entered
 - With salient numbers and charts
- The search results tailor the data provided according to your interests
 - Based upon analysis of the search criteria and other information gleaned from previous searches
 - Subject to your privacy preferences, of course! **
- Interactive data you can drill down on
- Search engines can also be used within Intranets!

** My other job is on privacy and identity management for an EU FP7 project
Summary

• The Web succeeds by connecting people
 ○ The power of the network effect!

• The Web of data
 ○ Rich models of concepts and relationships
 ○ Access to data and meta-data as basis for comparability
 ○ Rules of thumb for overcoming variations
 ○ Hiding internal representations and APIs

• Web-based ecosystem for financial information
 ○ Many ways to add value building on the work of others
 ○ Semantic Web as solution to data integration

• What's needed to drive this forward?
Thank you for listening

Dave Raggett, W3C

dsr@w3.org